How Does Metabolic Acidosis Impair Muscle and Bone Health?
The content contained within this slide deck is for educational purposes only. Not for promotional purposes or re-distribution.
David A. Bushinsky, MD

Professor of Medicine and of Pharmacology and Physiology

University of Rochester School of Medicine

Disclosure: Dr. Bushinsky is a consultant to Tricida, Inc.
Three Million Patients with Stage 3 to 5 CKD Affected by Metabolic Acidosis

- ~1.4 Million Patients with Metabolic Acidosis
- ~1.1 Million Patients with Metabolic Acidosis
- >600,000 Patients with Metabolic Acidosis

Stage 4 & 5

Stage 3b

Stage 3a

9%

18%

Data on file. NHANES 1999-2004 reports prevalence of CKD Stages 3 and 4 for the US adult population ages 20 and older. CKD Stage 3 and 4 prevalence was calculated using NHANES prevalence and 2016 US Census data. Stage 3a (70%) and 3b (30%) were approximated using NCCD-CDC Surveillance System. MA prevalence by Stage 3a, 3b, and 4 reported in Inker LA et al., J Am Soc Nephrol 22:2322-31, 2011.
Metabolic Acidosis as Defined by Guidelines

Serum Bicarbonate Levels Fall Below 22 mEq/L

- **Normal Range**: 22 – 29 mEq/L
- **Metabolic Acidosis**: 12 – <22 mEq/L
- **Acute/Severe Metabolic Acidosis**: <12 mEq/L

Body Adapts Prior to Decrease from Normal Serum Bicarbonate Range

Serum Bicarbonate Levels

Body Adapts Prior to Decrease from Normal Serum Bicarbonate Range

Small Increases in Muscle Degradation Will Cause a Loss of Muscle Mass

1. Continuous Skeletal Muscle Turnover
2. Small Increase in Muscle Degradation
3. Loss in Muscle Mass

References:
Putative Mechanisms that Contribute to Muscle Wasting in Patients with CKD and Metabolic Acidosis

Putative Mechanisms that Contribute to Muscle Wasting in Patients with CKD and Metabolic Acidosis

- Systemic pH
 - Pro-Inflammatory Cytokines
 - Insulin/IGF-1 Signaling
 - Activation of Ubiquitin-Proteasome Pathway
 - Caspase-3 Proteolysis

- Muscle pH
 - Muscle Protein Degradation
 - Muscle Wasting

Studies Show Association Between Metabolic Acidosis and Impaired Physical Function
Studies Show Association Between Metabolic Acidosis and Impaired Physical Function
Acid Buffering by Bone with Increased Acid Retention

Physicochemical Dissolution

Short-Term Acute Response

- CO_3^{2-}
- PO_4^{3-}
- Na^+
- K^+
- Ca^{2+}

Long-Term Chronic Response
Acid Buffering by Bone with Increased Acid Retention

Short-Term Acute Response

- Physicochemical Dissolution
- Releases
 - CO_3^{2-}
 - PO_4^{3-}
 - Na^+
 - K^+
 - Ca^{2+}

Long-Term Chronic Response

- Cell Mediated Resorption
- Decreased Osteoblastic Bone Formation
- Increased Osteoclastic Bone Resorption
- Decreased Bone Quality and Mass

CKD Practice Guidelines Suggest Treatment if Serum Bicarbonate Levels are Below 22 mEq/L
The End